воскресенье, 8 июля 2018 г.

Suavização da média móvel ponderada


Qual é a diferença entre uma média móvel simples e uma média móvel exponencial. A única diferença entre esses dois tipos de média móvel é a sensibilidade que cada uma mostra para as mudanças nos dados usados ​​em seu cálculo. Mais especificamente, a média móvel exponencial (EMA) dá uma maior ponderação aos preços recentes do que a média móvel simples (SMA), enquanto a SMA atribui igual ponderação a todos os valores. As duas médias são semelhantes porque são interpretadas da mesma maneira e são comumente usadas pelos comerciantes técnicos para suavizar as flutuações de preços. O SMA é o tipo mais comum de média usado pelos analistas técnicos e é calculado dividindo a soma de um conjunto de preços pelo número total de preços encontrados na série. Por exemplo, uma média móvel de sete períodos pode ser calculada adicionando os seguintes sete preços juntos e dividindo o resultado por sete (o resultado também é conhecido como média média aritmética). Exemplo Dado a seguinte série de preços: 10, 11, 12, 16, 17, 19, 20 O cálculo SMA seria assim: 10111216171920 105 7-período SMA 1057 15 Uma vez que as EMAs colocam uma maior ponderação em dados recentes do que em dados mais antigos , Eles são mais reativos às últimas mudanças de preços do que as SMAs, o que torna os resultados das EMAs mais oportunas e explica por que o EMA é a média preferida entre muitos comerciantes. Como você pode ver no gráfico abaixo, os comerciantes com uma perspectiva de curto prazo podem não se preocupar com qual média é usada, uma vez que a diferença entre as duas médias geralmente é uma questão de meros centavos. Por outro lado, os comerciantes com uma perspectiva de longo prazo devem dar mais consideração à média que usam porque os valores podem variar em alguns dólares, o que é suficiente para uma diferença de preço para finalmente se mostrar influente nos retornos realizados - especialmente quando você é Comercializando uma grande quantidade de estoque. Tal como acontece com todos os indicadores técnicos. Não há nenhum tipo de média que um comerciante possa usar para garantir o sucesso, mas usando o teste e o erro você pode, sem dúvida, melhorar seu nível de conforto com todos os tipos de indicadores e, como resultado, aumentar suas chances de tomar decisões comerciais sábias. Para saber mais sobre as médias móveis, consulte Noções básicas de médias móveis e noções básicas de médias móveis ponderadas. A maneira estranha de uma média móvel de furões a tendência de uma massa de medidas confusas pode ser vista ao traçar a média móvel de 10 dias juntamente com os pesos diários originais , Mostrados como pequenos diamantes. As médias móveis que usamos até agora dão igual significado a todos os dias na média. Isso não precisa ser assim. Se você pensa sobre isso, não faz muito sentido, especialmente se você estiver interessado em usar uma média móvel de longo prazo para suavizar os colisões aleatórias na tendência. Suponha que você esteja usando uma média móvel de 20 dias. Por que seu peso, quase três semanas atrás, deve ser considerado igualmente relevante para a tendência atual como seu peso nesta manhã. Várias formas de médias móveis ponderadas foram desenvolvidas para resolver essa objeção. Em vez de apenas somar as medidas para uma seqüência de dias e dividir pelo número de dias, em uma média móvel ponderada, cada medida é primeiro multiplicada por um fator de peso que difere do dia a dia. A soma final é dividida, não pelo número de dias, mas pela soma de todos os fatores de peso. Se fatores de peso maiores forem usados ​​para dias mais recentes e fatores menores para medidas mais atrasadas no tempo, a tendência será mais sensível às mudanças recentes sem sacrificar o alisamento de uma média móvel. Uma média móvel não ponderada é simplesmente uma média móvel ponderada com todos os fatores de peso iguais a 1. Você pode usar qualquer fator de peso que você gosta, mas um conjunto específico com a média de movimentação suavizada exponencial de montagem de jawbreaking provou ser útil em aplicações que variam do radar de defesa aérea Para negociar o mercado da barriga de porco Chicago. Vamos também pôr em prática as barrigas. Este gráfico compara os fatores de peso para uma média móvel de 20 dias exponencialmente suavizada com uma média móvel simples que pesa todos os dias igualmente. O alisamento exponencial dá a medição de hoje duas vezes o significado que a média simples atribuiria, a medição de ontem um pouco menor do que isso, e cada dia sucessivo inferior ao seu antecessor no dia 20, contribuindo apenas com 20 para o resultado com uma média móvel simples. Os fatores de peso em uma média móvel suavemente exponencial são potências sucessivas de um número chamado de constante de suavização. Uma média móvel suavizada exponencialmente com uma constante de suavização de 1 é idêntica a uma média móvel simples, uma vez que 1 para qualquer potência é 1. As constantes de suavização inferiores a 1 pesam mais os dados mais recentes, com o viés para as medidas mais recentes aumentando à medida que o alisamento Diminui constantemente para zero. Se a constante de suavização exceder 1, os dados mais antigos são mais ponderados do que as medidas recentes. Este gráfico mostra os fatores de peso resultantes de diferentes valores da constante de suavização. Observe como os fatores de peso são todos 1 quando a constante de suavização é 1. Quando a constante de suavização é entre 0,5 e 0,9, o peso dado aos dados antigos cai tão rapidamente em comparação com medidas mais recentes que não há necessidade de restringir a média móvel para Um número específico de dias, podemos medir todos os dados que temos, de volta ao início e permitir que os fatores de peso calculados a partir da constante de suavização descartem automaticamente os dados antigos à medida que se torna irrelevante para a tendência atual. Forecasting by Smoothing Techniques This O site é uma parte dos objetos de aprendizagem do JavaScript E-learning para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicações na seção MENU nesta página. Uma série temporal é uma sequência de observações que são ordenadas a tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab, sem seta ou digite as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos e o comportamento dos resíduos, modelagem de previsão de condições. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Triple Exponential Suavização é melhor no manuseio de tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holst Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual como a atual tendência. Observe que a média móvel simples é um caso especial do alisamento exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0.40 geralmente é efetivo. No entanto, pode-se realizar uma pesquisa em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário traçar (usando, por exemplo, Excel), no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as previsões passadas por Smoothing Techniques JavaScript para obter os valores de previsão passados ​​com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance, ele define o nível para a última observação e baseia-se na condição de que não há nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. Holder linear exponencial suavização capta informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção da tendência recente for suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão de duas etapas. Simplesmente adicione o valor previsto para o final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões necessárias a curto prazo.

Комментариев нет:

Отправить комментарий